翻訳と辞書
Words near each other
・ "O" Is for Outlaw
・ "O"-Jung.Ban.Hap.
・ "Ode-to-Napoleon" hexachord
・ "Oh Yeah!" Live
・ "Our Contemporary" regional art exhibition (Leningrad, 1975)
・ "P" Is for Peril
・ "Pimpernel" Smith
・ "Polish death camp" controversy
・ "Pro knigi" ("About books")
・ "Prosopa" Greek Television Awards
・ "Pussy Cats" Starring the Walkmen
・ "Q" Is for Quarry
・ "R" Is for Ricochet
・ "R" The King (2016 film)
・ "Rags" Ragland
・ ! (album)
・ ! (disambiguation)
・ !!
・ !!!
・ !!! (album)
・ !!Destroy-Oh-Boy!!
・ !Action Pact!
・ !Arriba! La Pachanga
・ !Hero
・ !Hero (album)
・ !Kung language
・ !Oka Tokat
・ !PAUS3
・ !T.O.O.H.!
・ !Women Art Revolution


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

suicide gene : ウィキペディア英語版
suicide gene

A suicide gene, in genetics, will cause a cell to kill itself through apoptosis. Activation of these genes can be due to many processes, but the main cellular "switch" to induce apoptosis is the p53 protein. Stimulation or introduction (through gene therapy) of suicide genes is a potential way of treating cancer or other proliferative diseases. Suicide genes form the basis of a strategy for making cancer cells more vulnerable, more sensitive to chemotherapy. The approach has been to attach parts of genes expressed in cancer cells to other genes for enzymes not found in mammals that can convert a harmless substance into one that is toxic to the tumor.
Most suicide genes mediate this sensitivity by coding for viral or bacterial enzymes that convert an inactive drug into toxic antimetabolites that inhibit the synthesis of nucleic acid. Suicide genes must be introduced into the cells in ways that ensure their uptake and expression by as many cancer cells as possible, while limiting their expression by normal cells. Suicide gene therapy for cancer requires the vector to have the capacity to discriminate between target and non target cells, between the cancer cells and normal cells.〔(【引用サイトリンク】title=Suicide gene )
The ultimate goal of cancer therapy is the complete elimination of all cancer cells, while leaving all healthy cells unharmed. One of the most promising therapeutic strategies in this regard is cancer suicide gene therapy (CSGT), which is rapidly progressing into new frontiers.The therapeutic success, in CSGT, is primarily contingent upon precision in delivery of the therapeutic transgenes to the cancer cells only. This is addressed by discovering and targeting unique or / and over-expressed biomarkers displayed on the cancer cells and cancer stem cells. Specificity of cancer therapeutic effects is further enhanced by designing the DNA constructs, which put the therapeutic genes under the control of the cancer cell specific promoters. The delivery of the suicidal genes to the cancer cells involves viral, as well as synthetic vectors, which are guided by cancer specific antibodies and ligands. The delivery options also include engineered stem cells with tropisms towards cancers. Main mechanisms inducing cancer cells' deaths include: transgenic expression of thymidine kinases, cytosine deaminases, intracellular antibodies, telomeraseses, caspases, DNases. Precautions are undertaken to eliminate the risks associated with transgenesis.Progress in genomics and proteomics should help us in identifying the cancer specific biomarkers and metabolic pathways for developing new strategies towards clinical trials of targeted and personalized gene therapy of cancer.By introducing the gene into a malignant tumor, the tumor would reduce in size and possibly disappear completely, provided all the individual cells have received a copy of the gene. This depends on the effectiveness of the vector (usually a virus) in reaching all the cells, and distinguishing adequately between malignant cells and those of normal tissue.
When the DNA sample in the virus is taken from the patient's own healthy cells, the virus does not need to be able to differentiate between cancer cells and healthy ones. In addition, the advantage is that it is also able to prevent metastasis upon the death of a tumor.
Suicide genes are often utilized in biotechnology to assist in molecular cloning. Vectors incorporate suicide genes for an organism (such as E. coli). The cloning project focuses on replacing the suicide gene by the desired fragment. Selection of vectors carrying the desired fragment is improved since vectors retaining the suicide gene result in cell death.
==Apoptosis==
(詳細はinflammation that can cause further distress of injury within the body. Apoptosis, on the other hand, is relatively civil. Many cells undergo programmed cell death, or apoptosis, during fetal development. A form of cell death in which a programmed sequence of events leads to the elimination of cells without releasing harmful substances into the surrounding. Apoptosis plays a crucial role in developing and maintaining the health of the body by eliminating old cells, unnecessary cells, and unhealthy cells. The human body replaces perhaps one million cells per second. When a cell is compelled to commit suicide, proteins called caspases go into action. They break down the cellular components needed for survival, and they spur production of enzymes known as DNas, which destroy the DNA in the nucleus of the cell. It's like roadies breaking down the stage in an arena after a major band has been through town. The cell shrinks and sends out distress signals, which are answered by vacuum cleaners known as macrophages. The macrophages clean away the shrunken cells, leaving no trace, so these cells have no chance to cause the damage that necrotic cells do. Apoptosis also differs from necrosis in that it's essential to human development. For example, in the womb, our fingers and toes are connected to one another by a sort of webbing. Apoptosis is what causes that webbing to disappear, leaving us with 10 separate digits. As our brains develop, the body, the body creates millions more cells than it needs; the ones that don't form synaptic connections undergo apoptosis so that the remaining cells function well. Programmed cell death is also necessary to start the process of menstruation. That's not to say that apoptosis is a perfect process. Rather than dying due to injury, cells that go through apoptosis die in response to signals within the body. When cells recognize viruses and gene mutations, they may induce death to prevent the damage from spreading. Scientist are trying to learn how they can modulate apoptosis, so that they can control which cells live and which undergo programmed cell death. Anti-cancer drugs and radiation, for example, work by triggering apoptosis in diseased cells. Many diseases and disorders are linked with the life and death of cells—increased apoptosis is a characteristic of AIDS, Alzheimer's, and Parkinson's disease, while decreased apoptosis can signal lupus or cancer. Understanding how to regulate apoptosis could be the first step to treating these conditions.〔(【引用サイトリンク】title=What is apoptosis? )
Too little or too much apoptosis can play a role in many diseases. When apoptosis does not work correctly, cells that should be eliminated may persist and become immortal, for example, in cancer and leukemia. when apoptosis works overly well, it kills too many cells and inflicts grave tissue damage. This is the case in strokes and neurodegenerative disorders such as Alzheimer's, Huntington's, and Parkinson's disease. Also known as programmed cell death and cell suicide.〔(【引用サイトリンク】title=Apoptosis definition - Medical Dictionary: Definitions of Popular Terms Defined on MedTerms )

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「suicide gene」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.